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Abstract

Conjugate heat transfer by forced convection over a vertical cylinder without heat generation has been a subject of
many investigations in the recent past. In the present work, the radial heat conduction along with heat generation in a
vertical cylinder is considered for analysis. The steady two-dimensional conduction equation for the heat generating
cylinder and steady two-dimensional laminar boundary layer equations for the flowing fluid are solved simultaneously
using a finite-difference scheme. Results are presented for a wide range of conduction—convection, heat generating
parameters and length to diameter ratio for a specific fluid having Prandtl number 0.005. It is found that the radial
temperature distribution in the boundary layer as well as the cylinder are remarkably significant especially with the
inclusion of internal heat generation in the cylinder. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Conjugate heat transfer refers to the heat transfer
processes involving an interaction of conduction in a
solid body and convection in the fluid surrounding it.
Thus the analysis of this type of heat transfer processes
necessitates the coupling of the conduction in the solid
and the convection in the fluid present. The conditions
of continuity in temperature and heat flux has to be
fulfilled at the fluid-solid interface. Conjugate heat
transfer occurs in many important engineering devices.
A common example is a heat exchanger in which the
conduction in solid tube wall is greatly influenced by the
convection in fluid flowing over it. Another example of
practical importance of conjugate heat transfer is found
in fins. The conduction within the fin and convection in
the fluid surrounding it must be simultaneously analysed
to obtain vital design information.

The conjugate heat transfer finds yet another very
important application in the fuel element of a nuclear
reactor. During normal operation of a nuclear reactor,
the internal heat generated in the fuel element must be
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dissipated and carried away by a stream of coolant
passing over it. If the heat generated is not removed fast
enough by the coolant, the fuel element may heat up so
much that eventually a part of the core may melt. Hence
the problem is the one of heat removal without ex-
cessively high temperature inside fuel elements or on
their surfaces. A knowledge of the temperature distri-
bution in the fuel element is needed in order to predict
its performance, in particular the highest fuel element
temperature and the rate of heat removal. This necessi-
tates a detailed conjugate heat transfer analysis of the
heat generating fuel element washed by forced flow.
Conventional heat transfer analyses pertaining to ap-
plications of similar nature are based on the assump-
tions of a uniform surface temperature or the surface
heat flux, which actually varies over the solid surface.
The conjugate heat transfer problem of laminar
forced convection along a flat plate of finite thickness
has been analysed by Luikov et al. [1]. They solved the
problem by means of the generalized Fourier sine
transformation and a series expansion in terms of the
Fourier variable. Luikov [2] has given an approximate
solution of the above conjugate heat transfer problem by
means of the generalized Fourier sine transformation
and a series expansion in terms of the Fourier variable.
Luikov [2] has given an approximate solution of the
above conjugate heat transfer problem assuming a linear
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Nomenclature

Lower case symbols given in parentheses are the
dimensional counterparts of the dimensionless
equivalents written on the same line

Fi conduction—convection parameter
(ki /I (ro/L)Re )

h local heat transfer coefficient

N, non-dimensional local heat transfer
coefficient (A(L/k;)Re™'/?)

k thermal conductivity

L characteristic length of the cylinder

n number of grids in the R-direction, in the
flow field

P parameter representing length to diameter
ratio of the cylinder (41.2/D?)

Pr Prandtl number

q" internal heat generation per unit volume in
the cylinder

(0] non-dimensional internal heat generation

parameter (¢"'72/(ty — t)ks)
R (r)  radial co-ordinate normal to the cylinder

surface
Ry (ry) radius of the cylinder
R non-dimensional radial coordinate used in the

two-dimensional heat conduction equation

Re Reynolds number (U, L/v)

R non-dimensional distance from the cylinder
surface (R — Ry)

T (1) temperature

I maximum allowable cylinder
temperature
U (u) velocity component in X-direction
V (v)  velocity component in R-direction
X (x)  stream-wise co-ordinate along the cylinder

length

Greek symbols

o thermal diffusivity of the fluid

B ratio of grid sizes (AR;/AX)

v kinematic viscosity of the fluid

o ratio of smaller to larger grid size in
R-direction

Subscripts

f fluid

j location in X-direction

k location in R-direction

] solid

00 free stream

Superscript
* value from previous iteration

temperature distribution in the flat plate and suggested
certain design formulae for the calculation of local
Nusselt number. Karvinen [3] presented an approximate
method for solving the conjugated heat transfer from a
flat plate in forced flows in the presence of uniform in-
ternal heat generation. The results have been compared
with available experimental data.

Sparrow and Chyu [4] carried out a conjugate heat
transfer analysis for a vertical plate fin washed by lam-
inar forced convection boundary layer flow. They as-
sumed the heat conduction in the fin to be one-
dimensional. The results obtained from the numerical
solutions have been compared with those from the
conventional methods. Huang and Chen [5] have studied
a vertical thin circular pin fin in forced convective flow.
They have considered one-dimensional heat conduction
in the longitudinal direction. The conservation equa-
tions for the laminar boundary layer and the energy
equation for the fin have been solved simultaneously by
an efficient implicit difference scheme. The results are
presented for a range of values of conjugated convec-
tion—conduction parameter and the transverse curvature
parameter. Velusamy and Garg [6] have obtained the
heat transfer characteristics for a vertical cylindrical fin
washed by a combined forced and free convective flow.
They have also followed a simultaneous solution to

conduction problem for the fin and laminar boundary
layer equations for the flowing fluid. The effect of vari-
ous parameters such as the conduction-convection
parameter, the buoyancy influence parameter and the
dimensionless radius on the fin temperature distribution
and the heat flux rate has been analysed numerically by
treating one-dimensional heat conduction in the fin. The
results obtained for Pr = 0.7 have been compared with
those of the conventional mode. It is observed that the
conventional model overpredicts the fin effectiveness at
small values of conduction—convection parameter. It is
also pointed out by Velusamy and Garg [6] that for
forced flow at any value of conduction—convection
parameter, local heat transfer coefficient decreases
monotonically in the flow direction as the boundary
layer grows.

An accurate solution of the coupled forced convec-
tion—conduction problem for a horizontal flat plate has
been given by Pozzi and Lupo [7]. They analyzed the
entire thermo-fluid — dynamic field by means of two
expansions in terms of coupling parameter. Yu et al. [8]
proposed a very effective solution method to solve the
conjugate problems of forced convection in incom-
pressible laminar boundary layer flow with constant
properties and heat conduction in a solid wall. For flows
passing a flat plate and a wedge, very accurate finite
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difference solutions of interface temperature and heat
transfer rates are presented over the entire thermo-fluid-
dynamic field for any Prandtl number between 0.0001
and infinity. Comprehensive correlation equations of the
local Nusselt numbers are obtained, which are in good
agreement with numerical data. Exact solutions are also
presented for the conjugate problems of the stagnation
flow and a rotating cone or disk.

Two-dimensional heat conduction in the solid for the
analysis of forced convective conjugate heat transfer
problem was not considered in any of the above inves-
tigations. In addition, most of the analyses available in
literature are based on the assumption of no heat gen-
eration in the solid. This simplification may hold good
for certain engineering applications but definitely not
valid for many important applications such as the fuel
element of a nuclear reactor. In the latter case, radial
heat conduction also needs to be taken into account in
addition to the axial heat conduction. Most of the an-
alyses of forced convective conjugate heat transfer re-
ported in the literature are limited to either horizontal or
vertical flat plate. Only Huang and Chen [5] and Ve-
lusamy and Garg [6] have studied the conjugate heat
transfer from a vertical cylindrical fin. They too have not
included radial heat conduction into their analysis.

The present work deals with the analysis of the
conjugate heat transfer in a heat generating vertical
cylinder washed by a laminar forced convection
boundary layer flow. The objective of this investigation
is to study the effect of various parameters on temper-
ature profiles and important heat transfer characteristics
by including radial heat conduction in the analysis.
Accordingly, the governing partial differential equations
for the cylinder and flowing fluid are solved simulta-
neously by satisfying the continuity of the heat flux and
the temperature at the interface. While the boundary
layer equations are solved by a fully implicit finite dif-
ference marching technique, the two-dimensional heat
conduction equation is solved by the line by line
method.

2. Mathematical formulation

A heat generating vertical cylinder washed by an
upwardly flowing stream of a fluid is considered as
shown in Fig. 1. The lower end of the cylinder is as-
sumed to be maintained at the free stream temperature
while the upper end is insulated. The heat transfer
mechanism involves the following two phenomena:

(a) conduction inside the cylinder, and
(b) convection from the cylinder surface to the
flowing fluid.

The velocity and temperature distributions in the
flow field are governed by the boundary layer equations,
while the temperature distribution inside the cylinder is

Vertical cylinder
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Fig. 1. Flow past a vertical cylinder.

governed by the two-dimensional heat conduction
equation. The following important assumptions are
made in the present analysis:
(1) the thermophysical properties variation of the
fluid are negligible,
(ii) the flow is steady, laminar, two-dimensional
and incompressible,
(iii) the heat generation is uniform throughout the
cylinder,
(iv) the thermal conductivity of the cylinder ma-
terial does not change with temperature, and
(v) the cylinder material is homogeneous and iso-
tropic.

Symmetry about the cylinder centerline enables only
half of the cylinder needs to be taken as the domain for
obtaining two-dimensional temperature distribution in-
side the cylinder. Also the temperature gradient along
the cylinder centerline is zero. The boundary condition
at the cylinder surface (i.e., at the interface between the
solid and the fluid) is governed by the requirement that
the heat flux and temperature be continuous. Since the
fluid velocity at the surface of the cylinder is zero due to
the no slip condition, the heat transfer from the surface
to the fluid in its immediate vicinity is predominantly by
conduction and can therefore be given by Fourier’s law
of heat conduction.

The dimensionless form of the boundary layer
equations governing the flow over the vertical cylinder is
given by

d 0
(RU) + =5 (RV) = 0. (1)

Continuity : e
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ou oU 13U U
Momentum : U§+ Vﬁ_l_iﬁ R (2)
dr 1 10T 1T

or
Energy : U_—=+V

xR ERR TR (3)

The non-dimensional form of the boundary conditions
for solving these equations will be

UX,Ry) =0, V(X,R)=0, T(X,Ry)=T(X),
UX,00) =1, T(X,00)=0, U(O,R)=1,
T(0,R) = 0. 4)

The dimensional form of two-dimensional heat con-
duction equation in the cylinder with uniform internal
heat generation is

T T 1 oT

- 4 P4+ p_
+ + R, OR,

AR +PQ=0. (5)

The non-dimensional form of the boundary conditions
for solving the heat conduction equation are

or or

T(07R):07 &(I’R):O’ aiRl(X70):07
or or
a—RI(X,l) —an—R(X7R0)7

Ty(X,1) = Ti(X,Ry). (6)

The following non-dimensional parameters were used in
the above equations (Egs. (1)—(6)).

X =x/L, R=(r/L)Re'?, Ry= (ro/L)Re"?,
Ri=r/ry, U=ufuy, V= (v/uy)Re?
T=(t—ts)/(to—ts), Re=upl/v, Pr=v]o,
P=4L2/D*  O=q"r5/(t — txc)ks,

Fi = (ki /ks)(ro/L)Re". (7)

Analytical solution of the governing equations pertain-
ing to the conjugate heat transfer problem (Egs. (1)-(6))
is not easy owing to the presence of non-linear terms in
the boundary layer equations. Therefore, these equa-
tions are solved using a finite difference technique. The
procedure starts with the solution of the boundary layer
equations (Egs. (1)-(3)) subject to an assumed surface
temperature distribution. This results in a knowledge of
the temperature in the flow field. Eq. (5) is solved subject
to the conjugate boundary conditions (Eq. (6)) using the
updated temperature distribution in the flow field. The
resulting improved surface temperature distribution is
again used to solve the boundary layer equations. The
process is repeated until convergence of the cylinder
surface temperature distribution is obtained. The
boundary layer equations are parabolic in the X-direc-
tion and can be solved easily by a marching technique.
As the energy equation is decoupled from the continuity

and momentum equations, it can be solved once U and
V values are known. The two-dimensional heat con-
duction equation is elliptic in nature and is solved using
line by line method.

3. Finite difference solution

In order to represent the dimensionless form of the
governing partial differential equations into finite dif-
ference form, a two-dimensional rectangular mesh is
superimposed on the computational domain. Indices
(j,k) are used to indicate position in the (X,R) direc-
tions, respectively. The choice of the coordinates is such
that (0,0) represents the leading edge both in terms of the
indices and the spatial coordinates. A small change by
AX and AR in the X and R directions respectively, in-
creases j and k by 1, the cylinder surface is represented
by k=0 and the edge of the boundary layer by
k=n+1.

3.1. Discretization

The boundary layer equations are discretized in such
a way that the solution can be carried out by a marching
procedure in the X-direction. A highly implicit difference
representation is preferred for the Egs. (2) and (3). Eq.
(1) is solved in an explicit stepwise manner. Forward
differencing in the marching X-direction and central
differencing in the R-direction are employed in Egs. (2)
and (3), whereas only forward differencing is employed
in Eq. (1). The finite difference form of the equations
selected is given below [9]:

Continuity equation:

Ri1Ujripr1 — Rie1 Ui +Rk+1 Vietirn — RiViw 0

AX AR
(8)
Momentum equation:
Uit — Ujs Uirtjr1 — Uit
Uiiix {#} + Viix {”W
_ Ui = Uit | Uit = 2Uj1p + Uppr g
2R, AR (AR) ’
9)
Energy equation:
Tivrh — Tix v — Tip—t
Uiiix {%} + Virs {%
_ Tivtjsr — Tipip—t | Tiprp—1 — 2T10 + Tirpen (10)

2PrR(AR Pr(AR)

The above discretization is second order accurate in R
for U and 7. While obtaining the solution by the
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Thomas algorithm, the sufficient conditions to be satis-
fied by the tridiagonal coefficient matrix elements
(Roache [10]) are fulfilled by the discretized Egs. (9) and
(10).

Central differencing is employed in both X and R
directions while discretizing the heat conduction equa-
tions as given below

Tioipe — 2T + Tk P [Tia1 — 2Tk + Tias1 ]
(AX)? (AR,
Tiper — Tjpi]

[ _
P ARyt =0 (11)

Using L’Hospital’s rule the governing equation at the
cylinder centerline is written as

Tiorp — 2Tj5 + Tirk Lop Tinr — 2T55 + T pa
(Ax)* (AR,)*
+PO=0. (12)

The above discretizations are second order accurate in
both the radial and axial directions.

For the boundary condition at the solid—fluid inter-
face backward differencing is employed for the tem-
perature gradient on the solid side, while a three-point
polynomial fitting is used to represent the temperature
gradient on the fluid side. The discretized form of this
equation is given below:

Tijg — Tix— | =3Tx + 4T 51 — Tips
, _ a3 , 13
AR, ! 2(AR) (13)

3.2. Solution procedure

Equations (8)—(13) are rewritten in a form which
readily adaptable for solution. The computation of the
values of U, V and T in the flow field is carried out by a
marching procedure, starting from the leading edge
(X=0). The discretized momentum equation (Eq. (9))
written for k= 1(1)n leads to a set of n nonlinear
equations for n unknown values of U at the X-location
(j + 1). This set is reduced to a linear set by replacing the
coefficients U, 1, and V,,, in the non-linear terms of
Eq. (9) by their known values at the previous iteration.
The linearized tridiagonal set is solved iteratively using
the discretized continuity equation (Eq. (8)) to update V'
at the location (j+ 1) till an accuracy of 0.01 is
achieved. Once the values of U and V have been ob-
tained at location (j+ 1), the discretized energy equa-
tion (Eq. (10)) written for k= 1(1)n leads to a
tridiagonal set of n linear equations that can be easily
solved for n unknown values of 7 at the location (j + 1).

The two-dimensional heat conduction equation (Egs.
(11) and (12)) is next solved iteratively by the line by line
method. Each iteration consists of two alternate sweeps,

the first one being in the X-direction and the second in
the R-direction. The procedure starts with an assumed
temperature distribution over the cylinder and compu-
tation is carried out iteratively. The iterations are con-
tinued till the temperature distribution over the cylinder
obtained in two successive iterations satisfy the conver-
gence criterion of the order of 1073, Since Egs. (11) and
(12) form a penta-diagonal matrix system, during the X-
sweep a set of equations forming tridiagonal matrix
system are solved using Thomas algorithm for each fixed

Jj. The terms corresponding to the nodes of (j + 1,k) and

(j — 1,k) are transferred to the right hand side and these
are assumed from the previous iteration. Thus Eqgs. (11)
and (12) can be rewritten during the X-sweep as:

Tij {— P+ m} + T [2[3)2 + 2P}
P
# T | =P
= PO(AR)” + B (Tj-1x + Tyors), (14)
Uy [2/32 +4P] + Tj1 [ — 4P]
=PO(ARY) + B*(Ti-1x + Tr14) (15)

where = AR;/AX. After X-sweep, R-sweep is per-
formed by transferring terms corresponding to (j,k + 1)
and (j,k — 1) for each k. The Eqgs. (11) and (12) can be
rewritten during R-sweep as:

Tiova = B + T 287 + 2P] + Tpaa[ - 7]

:PQ“D[ 2(k—1)

} + P[Tjsor + Tigern ], (16)

Tiovi[ = B] + Tx 28 + 4P] + T [~ £
=PQ+4PTj.,. (17)

The improved surface temperature distribution of the
cylinder resulting from the solution of Eqgs. (11) and (12)
is again used to solve Egs. (8)—(10). The overall solution
procedure is repeated till the cylinder surface tempera-
ture distribution satisfies the convergence criterion of the
order of 1073,

3.3. Computational details

The computer code developed takes care of the fact
that the boundary layer thickness has to be increased
as we move away from the leading edge. Thus, the
hydrodynamic and thermal boundary layer thicknesses
are adjusted separately during the computation, while
marching in the X-direction. This is done by increas-
ing the number of grids, n, in the R-direction at each
X-location. The value of n is chosen so as to ensure
that there are at least three grid points where
U=1,T=0.
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For the boundary layer solution, the step size AX is
increased systematically after marching certain number
of steps in the X-direction. This has been done to im-
prove the computational efficiency. The step size close to
the leading edge is taken to be very small. This value is
almost doubled at an interval of about 10 marching
steps. The set of the grid sizes AX and the number of
steps marched with each AX is given in Table 1.

While AX can be assigned any value without diffi-
culty, the same is not applicable for the value of AR
because of the central differencing employed for several
terms in the R-direction. Hence it is easier to keep the
vale of AR uniform. However, due to large gradients of
velocity and temperature near the cylinder surface, AR
must be kept quite small near these regions. Then uni-
form AR across the whole boundary layer thickness,
would not only increase the number of simultaneous
equations to be solved (which requires excessive com-
puter time for solution), but also involves large round-
off error. An alternative is to use a fine mesh size (AR) in
regions of large gradients and a relatively coarse grid
away from it. This requires a modification of the dis-
cretized equations at locations where the grid size
changes and this was done by introducing a second
order algebraic interpolation scheme. An efficient self-
adaptive grid scheme proposed by Nakahashi and Dei-
wart [11] is used along the R-direction. This makes the
computer code more efficient apart from yielding more
accurate results at the expense of a marginal increase in
computational time. The subroutine for adaptation is
called at pre-specified X-locations in the marching di-
rection so as to readapt the grid points along the R-di-
rection.

The self-adaptive grid generation technique distrib-
utes values of AR within the maximum and minimum
specified values of AR. A minimum AR value of 0.02
and a maximum value of 0.1 were chosen. The sub-
routine for adaptation was called after every 20 steps.
For the first 20 steps a uniform AR value of 0.04 was
chosen.

In order to validate the computer code developed,
the flow past a flat plate at zero incidence and con-
stant properties was computed with the present code.
The results obtained were compared with the Blasius
solution for the flat plate and found to be very close.

Table 1
Step sizes in X direction
Sl. no. AX No. of X value
steps reached
1. 0.0001 100 0.01
2. 0.001 10 0.02
3. 0.002 10 0.04
4. 0.005 12 0.1
5. 0.01 90 1.0

For the solution of the two-dimensional heat con-
duction equation, a constant grid size of 0.01 is cho-
sen in both the axial and radial directions. The
knowledge of the surface temperatures at grids inter-
mediate to these grids (required during the subsequent
solution of the boundary layer equations, where
smaller grid sizes are used) is obtained by Lagrangian
interpolation.

4. Results and discussion

The computer code developed and tested has been
used to analyse the conjugate forced convection—con-
duction heat transfer in a heat generating vertical cyl-
inder. The results are presented for a range of values of
conduction—convection parameter, heat generation
parameter and length to diameter ratio keeping the
Prandtl number Pr of the flowing fluid constant at 0.005.
Special emphasis is given to the effect of these parame-
ters on the radial temperature distribution in the cylin-
der as well as the boundary layer.

4.1. Axial velocity profiles

The dimensionless axial velocity U profiles at various
X-locations on the cylinder are shown in Fig. 2. It is
observed that the profile near the leading edge has
steeper gradient compared to that away from it. This
depicts the growth of the boundary layer in the axial
direction. The non-similar nature of the flow is clearly
evident from the dependence of these profiles on the
value of X. The axial velocity profiles approach the value

o
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0.80

0.60

3

=) 3

0.40]

0.20
0.00frr T T T TTTTTTTTT T T T T T T T I T T T T T T T T T T T
0.00 1.00 2.00 3.00 4,00

Rs

Fig. 2. Longitudinal velocity distribution in the boundary layer
on a vertical cylinder at different X-locations.
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of that obtained by similarity solution only towards the
trailing edge.

4.2. Radial velocity profiles

Fig. 3 shows the dimensionless radial velocity profiles
at different axial locations. It is clear that the radial
velocity up to some distance from the leading edge, at
first increases and then decreases. This is due to the fact
that entrainment of the fluid into the boundary layer will
be more near the leading edge compared to that far from
it. The entrainment of fluid into the boundary layer
decreases toward the trailing edge. These profiles also
depict the non-similar nature of the flow as explained in
previous section.

4.3. Temperature profiles in the boundary layer

Fig. 4 depicts the radial temperature distribution in
the boundary layer at various axial locations. On com-
parison with velocity profiles depicted in Figs. 2 and 3, it
is noticed that the growth of the thermal boundary layer
is much faster than the velocity boundary layer. This is
due to the fact that very low value of Prandtl number
corresponding to that for liquid metals is used in the
solution. This figure also illustrates the growth of
the thermal boundary layer. It can be noticed that the
temperature along the surface of the cylinder increases
upto a certain distance from leading edge and attains
very near to a constant value at X = 0.1.

Fig. 5 illustrates the effect of conduction—convection
parameter, Fi on the radial temperature distribution in
the cylinder at an axial location X = 0.1. It is observed

N
=

Lo v vy vy a by

e
®
=3

0.40:

TN T O T T T T DU U [ 0 T T N MR A

0.00 LI S o U e e B S B B B O O
0.00 1.00 2.00 3.00
Rs

Fig. 3. Transverse velocity distribution in the boundary layer
on a vertical cylinder at different X-locations.
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Fig. 4. Temperature distribution in the boundary layer on a
vertical cylinder at different X-locations.
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Fig. 5. Effect of conduction—convection parameter on tem-
perature distribution in the boundary layer at X = 0.1.

that as Fi increases, the thickness of the thermal
boundary layer decreases. This is due to the fact that
increase in Fi is mainly due to the thermal conductivity
of the flowing fluid. In other words, increase in Fi, re-
sults in higher rate of heat dissipation to the fluid, which
is most desirable in many engineering applications.

The effect of heat generation parameter, Q on the
radial temperature distribution in the boundary layer at
X = 0.1 is shown in Fig. 6. It is seen that increase in Q
increases the thickness of the thermal boundary layer.
Even though there is no appreciable change in the
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Fig. 6. Effect of heat generation parameter on the temperature
distribution in the boundary layer at X = 0.1.
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Fig. 7. Effect of L/D ratio on the temperature distribution in
the boundary layer at X = 0.1.

temperature gradient in the boundary layer, overall
temperature of the fluid is increased. This may be at-
tributed to the fact that higher value of Fi which is kept
constant facilitates dissipation to the flowing fluid.
Increase in the surface temperature due to increase in Q
is also observed. Based on the above observation it must
be noted that there is a limit to which Q can be in-
creased.

Fig. 7 shows the effect of length to diameter ratio
L/D of the cylinder on the radial temperature distri-

0.72
] Pr :0.005
] Ry =1.0
g Fl =6.0
1 Q =20
] L/D =20

0.52

= ]

0.32

L AR s S ARSARAS AR AL
0.00 0.20 040 0.60 0.80 1.00

Ry

Fig. 8. Radial temperature distribution in the cylinder at dif-
ferent X-locations.

0.60 -]
0.40 ]
+ ]
0.20—
]
-
0,00 T T T
0.00 0.20 0.40 0.60 0.80 1.00

R1

Fig. 9. Effect of conduction—convection parameter on the
temperature distribution in the cylinder at X = 0.1.

bution in the boundary layer at X = 0.1. It is evident
from the figure that the thickness of the boundary
layer, the cylinder surface temperature and the fluid
temperature are not significantly increased. However,
temperature gradient in the fluid remains more or less
the same. The above observation is in good agreement
of the fact that higher L/D ratio corresponds to higher
flow Reynolds number which in turn gives rise to
higher convective heat transfer coefficient resulting in
higher rate of energy dissipation to the fluid. However,



G. Jilani et al. | International Journal of Heat and Mass Transfer 45 (2002) 331-341 339

1.10
] Pr =0.005
] Ry 1,0
0903 Fi 8.0
3 L/D =30
0.70
- ]
0-50
0.30
]
3
0.10 T T T T T T T T T T T
0.00 0.20 0.40 0.60 0.80 1.00

Ry

Fig. 10. Effect of heat generation parameter on the temperature
distribution in the cylinder at X = 0.1.
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Fig. 11. Effect of L/D ratio on the radial temperature distri-
bution in the cylinder at X = 0.1.

all the energy dissipated to the fluid in radial direction
may not be carried away by the flowing fluid. This may
be the reason that there is slight increase in temperature
of the fluid.

4.4. Temperature profiles in the cylinder

Fig. 8 presents the radial temperature distribution in
the cylinder at four different axial locations. It is noticed
that cylinder temperature at the center increases along
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Fig. 12. Effect of conduction-convection parameter on the
axial surface temperature distribution.
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Fig. 13. Effect of conduction-convection parameter on the
local heat transfer coefficient.

the axial direction. However, increase in temperature is
very much reduced after X = 0.04. This trend reveals an
important information because temperature in the cyl-
inder must be below certain allowable limit. It is also
clear from the figure that radial temperature distribution
becomes steeper along the axial direction. This is due to
the fact that the rate of heat flux from the surface of the
cylinder near the leading edge is more than that away
from it. Since the internal heat generation is assumed to
be uniform, lesser heat flux from the surface results in
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energy storage giving rise to steeper temperature gradi-
ent.

The effect of conduction—convection parameter, Fi on
the radial temperature distribution in the cylinder is
shown in Fig. 9. It is seen that increase in Fi, results in
lower temperature distribution in the cylinder. However,
this trend becomes insignificant when Fi value is in-
creased from 8 to 10. The maximum temperature at the
center of the cylinder has similar trend. The above
observed trend can be attributed to the increased energy
dissipation to the flowing fluid at higher values of Fi.
Obviously there will be a limit to which energy dissipa-
tion can be increased by increasing the value of Fi as
internal heat generation is kept constant.

Fig. 10 illustrates the effect of heat generation pa-
rameter, Q on the radial temperature distribution in the
cylinder at X = 0.1. It is quite evident from these figures
that increase in Q results in temperature distribution
with higher values. The radial temperature gradient is
also significantly increased. However, it is interesting to
note that the maximum operating temperature in the
cylinder limits the extent to which heat generation can
be increased. Evidently the above observation is in good
agreement of the fact that all the extra energy generated
within the cylinder cannot be dissipated keeping Fi value
constant.

Fig. 11 depicts the effect of length to diameter ratio,
L/D on the radial temperature distribution in the cyl-
inder at X = 0.1. It is seen that higher values of L/D
ratio results is radial temperature distribution with
higher values. Even though increase in temperature
distribution values are not very significant, increase in
L/D ratio will result into higher radial heat flux which is
desirable in many application such as the fuel element of
a nuclear reactor.

Fig. 12 shows the effect of conduction—convection
parameter, Fi on the axial surface temperature distribu-
tion. It is observed that axial surface temperature in-
creases sharply up to a distance very close to the leading
edge and thereafter remains more or less constant. In-
crease in Fi value results in relatively lower value of the
surface temperature. In addition the region of variable
surface temperature becomes closer to the leading edge.
The above observation is due to the fact that higher Fi
values result in higher energy dissipation to the adjacent
fluid resulting in lowering of surface temperature since
internal heat generation is kept constant.

4.5. Local heat transfer coefficient

The non-dimensional local heat transfer coefficient is
calculated using the relations

—0OT /OR|y_g,

I (X0) = () (L k)R =

(18)

The variation of local heat transfer coefficient, 4y along
the axial direction of the cylinder is shown in Fig. 13.
This figure also depicts the effect of conduction—con-
vection parameter, Fi on Ay. It is evident from Fig. 13
that Ay value sharply reduce to a constant value along
the axial direction up to a distance very near to the
leading edge. Increase in Fi values from 4 to 6 results in
more or less same distribution of /4y along the cylinder.
However, increase in Fi values from 6 to 8 results in a
significant increase in constant value of 4y even though
up to a certain distance from the leading edge, An dis-
tribution more or less is the same. The effect of varia-
tions in Fi to a much higher value is felt only after a
short distance from the leading edge. However, this
distance becomes shorter and shorter for higher values
of Fi.

5. Conclusions

This paper presents the consideration of radial heat
conduction along with internal heat generation in the
cylinder in a conjugate heat transfer situation. Although
the results obtained have qualitative similarity with
previous studies, this numerical work for conjugate heat
transfer has demonstrated that consideration of radial
heat conduction and internal heat generation presents
more significant and realistic results. In particular radial
temperature profiles in the boundary layer as well as in
the cylinder justify this attempt.
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